
FSUIPC Java SDK

README

https://mouseviator.com/ fsuipc-java-sdk

Version 1.0, Last update: 03/01/2021 by Radek Henys (Mouseviator)

https://mouseviator.com/fsuipc-java-sdk
https://mouseviator.com/fsuipc-java-sdk

Table Of Contents
FSUIPC Java SDK...1

1) Introduction...1
2) Contents of the archive...2
3) API documentation..4
4) License?..5
5) Bugs?...6
6) Contact..8
7) Thanks...9

1) Introduction

This is the brief readme for Java FSUIPC SDK by Radek Henys (Mouseviator) :) I am,
like many people I quess, lazy, so instead of writing it again, here is an excerpt from the
javadoc:

This whole Java FSUIPC SDK is based upon SDK written by Mark Burton, later
amended by Paul Henty for 64 bit environment. But, it has been greatly rewritten and
uses different approach.

Why the rewrite? Well, the main reason for me was performance considerations. After
studying FSUIPC C SDK, the wrapper library and the Java SDK by Mark, I found out
that the C/C++ wrapper library (fsuipc_java64.dll, fsuipc_java32.dll), that implements
the FSUIPCWrapper.readData and FSUIPCWrapper.writeData functions, calls the
FSUIPC_Process function. What is the catch? Well, normally when working with the
FSUIPC C/C++ SDK, you call FSUIPC_Read and FSUIPC_Write functions to tell
FSUIPC what data you want to read/write, kind of registering data requests, and than
process all of them using the FSUIPC_Process function. I have read on the forums that
this function is quite heavy on processing time – thus, it is not good to call it very often.
But this is how it was implemented in the previous wrapper libraries. The
FSUIPC_Process function got called every time you called the read or write functions. It
may not cause trouble in simple projects. But, when you would read multiple values,
continuously, like in the loop, for example for flight monitoring app, I think that might be
a performance issue sooner or later. Not mentioning, that your app probably would not
be the only one that FSUIPC would have to provides it’s services to. That is why I
decided to try to write a different SDK, that will try to reflect the approach that we would
use when writing the code in C/C++. This SDK thinks of FSUIPC read/writes as of data
requests. It allows you to register multiple of them and then process them all via one call
of the process function.

NOTE: This SDK is NOT considered to be complete! While I believe it contains solid
foundation for developing applications using FSUIPC in Java, it is far away from
complete. There are just a couple of helper classes which are more of an examples of
what to do with the “data requests”, how to write them. It would be nearly impossible for
me to cover all, most of FSUIPC offsets with helper classes and also test them. Look on
the FSUIPC.jar library source files, on the source of helper classes to see how they are
implemented.

1

2) Contents of the archive

Depending on what archive you downloaded (full source codes or just pre-compiled SDK
distribution…), you should found one or more of these folders:

• FSUIPC_Java_dist – the directory with pre-compiled Java package. It should
contain the FSUIPC.jar, FSUIPC-javadoc.jar (the javadoc packed in .jar),
FSUIPC-sources.jar (source packed in .jar), FSUIPC-test.jar (JUnit tests),
fsuipc_java32.dll, fsuipc_java64.dll and javadoc folder. These files are ready to
use in your project. The FSUIPC library was last compiled under JDK 15
(AdoptOpenJDK 15.0.1.9 Hotspot). Note that for production, only the
FSUIPC.jar, fsuipc_java32.dll, fsuipc_java64.dll are need.

• FSUIPC – the directory containing the source code of the FSUIPC.jar library.
The project is for Netbeans (Apache Netbeans 12 – to be specific). It was written
using JDK 15 , compiled with AdoptOpenJDK 15.0.1.9 Hotspot, and tested also
with 32bit JDK 15 (AdoptOpenJDK 15.0.1.9 Hotspot). This folder contains 3
batch files – Make JavaDoc.cmd – to make Javadoc (but not needed actually,
Netbeans can do that if setup correctly). The MakeHeaderFiles32.cmd and
MakeHeaderFiles64.cmd will create the header file for the FSUIPCWrapper
class (that is the one containing native functions) using the 32/64bit JDK. These
header files are then used in the CWrapper32 (fsuipc_java32.dll) and
CWrapper64 (fsuipc_java64.dll) C++ projects, which implements the native
functions. Note that all of these batch files contains absolute paths on my system
and therefore WILL NEED adjustments for your system.

• CWrapper32 - Contains the source code for the fsuipc_java32.dll – the 32bit
library version that implements native functions of the FSUIPCWrapper java
class. It is written in C++. The project is for Visual Studio (C++) 2019. When you
open this project in Visual Studio, it will probably need some settings adjustment,
as some paths will be different on your system than on mine, but skill-full
developer like you will have not big issues with that, I am sure. For sure you will
have to set paths to Java JDK header files, so that C++ knows about them (In VS
2019 this is under project properties → C/C++ → General → Additional Include
Directories). The folder is pretty BIG as it contains the packages for boost
libraries, that the library uses for logging purposes.

• CWrapper64 - Contains the source code for the fsuipc_java64.dll – the 64bit
library version that implements native functions of the FSUIPCWrapper java
class. It is written in C++. The project is for Visual Studio (C++) 2019. When you
open this project in Visual Studio, it will probably need some settings adjustment,
as some paths will be different on your system than on mine, but skill-full
developer like you will have not big issues with that, I am sure. For sure you will
have to set paths to Java JDK header files, so that C++ knows about them (In VS
2019 this is under project properties → C/C++ → General → Additional Include

2

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://adoptopenjdk.net/
https://netbeans.org/
https://adoptopenjdk.net/

Directories). The folder is pretty BIG as it contains the packages for boost
libraries, that the library uses for logging purposes.

• FSUIPCSimpleTest – contains simple sample application that shows the usage of
some FSUIPC functionality. It shows the basics of “FSUIPC data request”
concept of this SDK, the connection to FSUIPC and reading one time data
requests. The project is for Netbeans (Apache Netbeans 12 – to be specific).
Some settings adjustment will be required after opening the project. I had the
FSUIPC project set as dependency, you can do the same or you can point it to
pre-compiled FSUIPC.jar from FSUIPC_Java_dist.

• FSUIPCSimMonitor – contains more complex example of FSUIPC library
usage. Most SDK are shipped with basic examples, which really does not show
you much. Well, I tried to do better here :) This is SWING GUI application, with
map. It will wait for successful FSUIPC connection and then show various
aircraft and sim data, updating aircraft position on map. Shows even more from
the concept of FSUIPC data requests of this SDK – the continual data requests
and FSUIPC listener. The project is for Netbeans (Apache Netbeans 12 – to be
specific). Some settings adjustment will be required after opening the project. I
had the FSUIPC project set as dependency, you can do the same or you can point
it to pre-compiled FSUIPC.jar from FSUIPC_Java_dist. This example app
actually shows also a write requests. You can Pause the sim using the Pause
button or toggle the Slew mode using the Slew button.

• C++ Memory Validator Reports – this folder contains exported reports from the
C++ Memory Validator software, that I used to monitor the fsuipc_java32.dll and
fsuipc_java64.dll for memory leaks while running the FSUIPC Sim Monitor
example for about an hour. There are HTML reports, ans also stored sessions,
which you might be able to load in the software, if you own it.

3

Figure 1: The FSUIPC Aircraft Monitor example app using Java FSUIPC library

https://www.softwareverify.com/cpp-memory.php
https://netbeans.org/
https://netbeans.org/

3) API documentation

You will find that inside the javadoc folder in the FSUIPC_Java_dist folder. Read
especially the documentation of the FSUIPC class in the com.mouseviator.fsuipc
package, as it is the core class and the doc has brief samples in it.

4

4) License?

Well, the API from Mark Burton and Paul Henty were given for free, this one is also
FREE. If you want to be specific, than say it is LGPL.

5

https://www.gnu.org/licenses/lgpl-3.0.html

5) Bugs?

Well, it is most likely that some have found their way in the SDK. If you find any, I will
be happy if you let me know. See the Contact chapter. Because honestly, this is “not a
simple project”, at least not for me. It is not a hard hard, but neither simple. I am a
seasonal C++ programmer, the times C++ was my second language are gone for a while.
JNI (Java Native Interface), well, I did not read the whole documentation either. So what
I was afraid of were memory leaks. Because, to be honest, the way this works is a little
bit crazy so to speak.

How is it? Well, when you call FSUIPC_read or FSUIPC_write function from the
FSUIPC C/C++ SDK to read/write to/from some FSUIPC offset, it will store that request
to a memory. You can call these functions numerous times, the requests will get stores,
but you will get no values (will not write any to the sim), until you call FSUIPC_Process
function. That will trigger the inter process communication, send the stored data requests
to the FSUIPC library running within the simulator, which will perform the reading and
writing of required data, and send back results (actually, is stores them in the memory at
place as indicated by the data requests that were send). Don't get it? In other words, the
FSUIPC_Process function will tell the FSUIPC library: „here are the data that we want to
read/write, store the results to this address….“. This is still the C/C++ FSUIPC SDK,
where is the Java part you ask?

Well, the FSUIPCWarpperjava class implements some native methods. These reflect the
FSUIPC_read, FSUIPC_write, FSUIPC_Process functions (and some others). In a way,
we are exchanging data here between Java and C/C++ code. That is, what Java JNI (Java
Native Interface is for). And this is the side from FSUIPC C/C++ SDK to Java code. The
problem is how to keep reference to the Java variable after the native function call
ended… to be able to return values after process function. Because, we cannot know
when developer will call it. Java has no pointers as C/C++ and that is, I believe, why the
original SDK called FSUIPC_Process in each call of the FSUIPC_read and
FSUIPC_write implementation within the FSUIPCWrapper class (otherwise, it would
lead to memory exception). I modified the libraries so that these functions does not do
that and they behave like the FSUIPC SDK C/C++ read and write functions. For this to
work, the library must remember the memory addresses where FSUIPC stores results for
each request made, and also memory that acts as inter-changer between C/C++ and
respective Java variable. Have no clue what I am writing about? Ok, no problem. In other
words, we are doing quite a things with memory here :) Not that it would that complex at
the end of the day. If you look at the code, it is pretty simple. But, as I wrote before, I am
not a JNI expert, so the risk of unintentional memory leak is there.

But, I tested both versions of the libraries (fsuipc_java32.dll and fsuipc_java64.dll) with
the software called C++ Memory Validator, which is designed to find such as issues. Both
times, the sample FSUIPC Sim Monitor app monitored the sim (Prepar 3D) for about an

6

https://www.softwareverify.com/cpp-memory.php

hour. It is an excellent program by the way. But why I am writing about it. The result
indicate that there were about 980-1800 bytes (28 potential memory leaks) of unreleased
memory. These were all originated from 3rd party source files, and I think are potential,
because I was only monitoring the said libraries, so the freeing of memory indicated as
these memory leaks simply may not have been recorded. If you want, you can examine
the reports. The exports are stored in the C++ Memory Validator Reports folder.

7

6) Contact

If you want to contact me in regard of this JAVA FSUIPC SDK, you can do so via an
email: admin@mouseviator.com, or leave a post in the forums at
https://forums.mouseviator.com. I will gladly hear from you any suggestions, bug reports
etc.

8

https://forums.mouseviator.com/
mailto:admin@mouseviator.com

7) Thanks

Many people behind the flight simulator platforms we use, Pete and John Dowson for
FSUIPC, Mark Burton and Paul Henty for their SDK, as it was great starting point for
me.

9

	1) Introduction
	2) Contents of the archive
	3) API documentation
	4) License?
	5) Bugs?
	6) Contact
	7) Thanks

